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Abstract
We consider computation of the permanent of a positive (N ×N) non-negative
matrix, P = (

P
j

i

∣∣i, j = 1, . . . , N
)
, or equivalently the problem of weighted

counting of the perfect matchings over the complete bipartite graph KN,N .
The problem is known to be of likely exponential complexity. Stated as the
partition function Z of a graphical model, the problem allows for exact loop
calculus representation (Chertkov M and Chernyak V 2006 Phys. Rev. E 72
065102) in terms of an interior minimum of the Bethe free energy functional
over non-integer doubly stochastic matrix of marginal beliefs, β = (βj

i

∣∣i, j =
1, . . . , N

)
, also correspondent to a fixed point of the iterative message-passing

algorithm of the belief propagation (BP) type. Our main result is an explicit
expression of the exact partition function (permanent) in terms of the matrix of
BP marginals, β, as Z = Perm(P ) = ZBP Perm

(
β

j

i

(
1 − β

j

i

))/∏
i,j

(
1 − β

j

i

)
,

where ZBP is the BP expression for the permanent stated explicitly in terms of
β. We give two derivations of the formula, a direct one based on the Bethe
free energy and an alternative one combining the Ihara graph-ζ function and
the loop calculus approaches. Assuming that the matrix β of the BP marginals
is calculated, we provide two lower bounds and one upper bound to estimate
the multiplicative term. Two complementary lower bounds are based on the
Gurvits–van der Waerden theorem and on a relation between the modified
permanent and determinant, respectively.

PACS numbers: 02.60.−x, 47.11−j, 89.20.−a

1. Introduction

The problem of calculating the permanent of a non-negative matrix arises in many contexts
in statistics, data analysis and physics. For example, it is intrinsic to the parameter learning
of a flow used to follow particles in turbulence and to cross-correlate two subsequent images
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[1]. However, the problem is #P -hard [2], meaning that solving it in a time polynomial in the
system size, N, is unlikely. Therefore, when the size of the matrix is sufficiently large, one
naturally looks for ways to approximate the permanent. A very significant breakthrough was
achieved with the invention of a so-called fully polynomial randomized algorithmic schemes
(FPRAS) for the permanent problem [3]: the permanent is approximated in a polynomial time,
with high probability and within an arbitrarily small relative error. However, the complexity
of this FPRAS is O(N11), making it impractical for the majority of realistic applications.
This motivates the task of finding a lighter deterministic or probabilistic algorithm capable of
evaluating the permanent more efficiently.

This communication continues the thread of [1, 4] and [5], where the belief propagation
(BP) algorithm was suggested as an efficient heuristic of good (but not absolute) quality to
approximate the permanent. The BP family of algorithms, originally introduced in the context
of error-correction codes [6] and artificial intelligence [7], can generally be stated for any
graphical model [8]. The exactness of the BP on any graph without loops suggests that the
algorithm can be an efficient heuristic for evaluating the partition function or for finding a
maximum likelihood (ML) solution for the graphical model (GM) defined on sparse graphs.
However, in the general loopy cases, one would normally not expect BP to work well, thus
making the heuristic results of [1, 4, 5] somehow surprising, even though not completely
unexpected in view of the existence of polynomially efficient algorithms for the ML version
of the problem [9, 10], also realized in [11] via an iterative BP algorithm. This raises the
questions of understanding the performance of BP: what does it do well and what does it miss?
It also motivates the challenge of improving the BP heuristics.

An approach potentially capable of handling the question and the challenge was recently
suggested in the general framework of GM. The loop series/calculus (LS) of [12, 13] expresses
the ratio between the partition function (PF) of a binary GM and its BP estimate in terms of a
finite series, in which each term is associated with the so-called generalized loop (a subgraph
with all vertices of degree larger than 1) of the graph. Each term in the series, as well as the
BP estimate of the partition function, is expressed in terms of a doubly stochastic matrix of
marginal probabilities, β = (βj

i

∣∣i, j = 1, . . . , N
)
, for matching pairs to contribute a perfect

matching. This matrix β describes a minimum of the so-called Bethe free energy, and it
can also be understood as a fixed point of an iterative BP algorithm. The first term in the
resulting LS is equal to 1. Accounting for all the loop corrections, one recovers the exact
expression for the PF. In other words, the LS holds the key to understanding the gap between
the approximate BP estimate for the PF and the exact result. In sections 2 and 4, we will give
a technical introduction to the variational Bethe free energy (BFE) formulation of BP and a
brief overview of the LS approach for the permanent problem, respectively.

Our results. In this communication, we develop an LS-based approach to describe the quality
of the BP approximation for the permanent of a non-negative matrix. (i) Our natural starting
point is the analysis of the BP solution itself conducted in section 3. Evaluating the permanent
of the non-negative matrix, P = ((

p
j

i

)1/T ∣∣i, j = 1, . . . , N
)
, dependent on the temperature

parameter, T ∈ [0,∞], we find that a non-integer BP solution is observed only at T > Tc,
where Tc is defined by (15). (ii) At T > Tc, we derive an alternative representation for
the LS in section 5. The entire LS is collapsed to a product of two terms: the first term
is an easy-to-calculate function of β, and the second term is the permanent of the matrix
β.∗ (1 −β) = (βj

i

(
1 −β

j

i

))
. (The binary operator .∗ denotes the element-wise multiplication

of matrices.) This is our main result stated in theorem 3, and the majority of the consecutive
statements of our communication follows from it. We also present yet another, alternative,
derivation of theorem 3 using the multivariate Ihara–Bass formula for the graph zeta-function
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in subsection 5.2. (iii) section 6 presents two easy-to-calculate lower bounds for the LS.
The lower bound stated in corollary 7 is based on the Gurvits–van der Waerden theorem
applied to Perm(β. ∗ (1 − β)). Interestingly enough, this lower bound is invariant with
respect to the BP transformation, i.e. it is exactly equivalent to the lower bound derived via
application of the van der Waerden–Gurvits theorem to the original permanent. Another
lower bound is stated in theorem 8. Note that as follows from an example discussed in the
text, the two lower bounds are complementary: the latter is stronger at sufficiently small
temperatures, while the former dominates the large T region. (iv) Section 7 discusses an upper
bound on the transformed permanent based on the application of the Godzil–Gutman formula
and the Hadamard inequality. Possible future extensions of the approach are discussed in
section 8.

2. Background (I): graphical models, Bethe free energy and belief propagation

The permanent of a non-negative matrix, P = ((
p

j

i

)1/T ∣∣i, j = 1, . . . , N
)(

0 � p
j

i , 0 �
T � ∞), is a sum over the set of permutations on {1, . . . , N}, which can be parameterized
via binary-component vectors, σ , corresponding to perfect matchings (PM) on the complete
bipartite graph KN,N :⎧⎨

⎩σ = (σ j

i

) ∈ {0, 1}N×N |∀i :
N∑

j=1

σ
j

i = 1, ∀j :
N∑

i=1

σ
j

i = 1

⎫⎬
⎭ . (1)

This binary interpretation allows us to represent the permanent as the partition function (PF),
Z, of a probabilistic model over the set of perfect matchings. Each perfect matching, σ , is
realized with the probability

P(σ ) = 1

Z
P σ ; P σ ≡

∏
(i,j)∈E

(
p

j

i

)σ j

i /T
, Z ≡

∑
σ :PM

(
p

j

i

)σ j

i /T = Perm(P ), (2)

where E = {(i, j)|i, j = 1, . . . , N} are the edges of KN,N . In the zero-temperature limit,
T → 0, (2) selects one special ML solution, σ∗ = arg maxσ P σ . (Here and below we assume
that P is non-degenerate, in the sense that at T → 0, P(σ ) → 0 for ∀ σ �= σ∗.)

For a generic GM, assigning (un-normalized) weight P σ to a state σ , one defines the exact
variational (called Gibbs, in statistical physics, and Kullback–Leibler in statistics) functional

F{b(σ )} ≡ T
∑

σ

b(σ ) ln
b(σ )

P σ
. (3)

One finds that under the condition that the belief, b(σ ), understood as a proxy to the probability
P(σ ), is normalized to unity,

∑
σ∈PM b(σ ) = 1, the Gibbs functional is convex and it achieves

its only minimum at b(σ ) = P(σ ) and F{P} = −T ln Z.
The BP method offers an approximation which is exact when the underlying GM is a tree.

As shown in [8], the BP approach can also be stated for a general GM as a relaxation of the
Gibbs functional (3). In this paragraph we briefly review the concept of [8] with application to
the permanent problem. For the GM (2), the BP approximation for the state beliefs becomes

b(σ ) ≈ bBP(σ ) =
∏

i bi(σi)
∏

j bj (σ j )∏
(i,j)∈E b

j

i

(
σ

j

i

) , (4)

where ∀ i, j : σi = (σ j

i ∈ {0, 1}∣∣j = 1, . . . , N
)

s.t.
∑

j σ
j

i = 1 and σ j = (σ j

i ∈ {0, 1}∣∣i =
1, . . . , N

)
s.t.

∑
i σ

j

i = 1, i.e. σi and σ j each has only N allowed states corresponding to

3
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allowed local perfect matchings for the vertices i and j , respectively. The vertex and edge
beliefs are related to each other according to

∀(i, j) ∈ E : b
j

i

(
σ

j

i

) =
∑
σi\σ j

i

bi(σi) =
∑

σ j \σ j

i

bj (σ j ), (5)

and the beliefs, as probabilities, should also satisfy the normalization conditions:

∀(i, j) ∈ E : b
j

i (1) + b
j

i (0) = 1. (6)

Note that our notations for beliefs are not identical to the ones used in [8]: the multi-
variable beliefs, bi, are associated with vertices of KN,N , and the single-variable beliefs,
b

j

i , are associated with the edges of the graph. Substituting (4) into (3) and approximating∑
σ∈ PM b(σ )f

(
σ

j

i

)
with

∑
σ

j

i
b

j

i

(
σ

j

i

)
f
(
σ

j

i

)
, etc, one arrives at the BFE functional

FBP
{
b

j

i

(
σ

j

i

); bi(σi); bj (σ j )
} ≡ E − T S, E ≡

∑
(i,j)

b
j

i (1) log
(
p

j

i

)
, (7)

S ≡
∑
(i,j)

∑
σ

j

i

b
j

i

(
σ

j

i

)
ln b

j

i

(
σ

j

i

)−
∑

i

∑
σi

bi(σi) ln bi(σi) −
∑

j

∑
σ j

bj (σ j ) ln bj (σ j ). (8)

Note that the BFE functional is bounded from below and generally non-convex, and thus
finding the absolute minimum of the BFE is the main task of the BFE approximation. The BP
approximation ZBP of the partition function is given by FBP = −T ln ZBP at a minimum of
the BFE.

Moreover, the variational formulation of (5)–(8) can be significantly simplified in our
case; one can utilize (5), (6) and express bi(σi), bj (σ j ) and b

j

i

(
σ

j

i

)
solely in terms of the

β
j

i ≡ b
j

i (1) variables, satisfying doubly stochastic constraints

∀(i, j) ∈ E : 0 � β
j

i � 1; ∀ i :
∑

j

β
j

i = 1; ∀ j :
∑

i

β
j

i = 1. (9)

The entropy (8) becomes

S
{
β

j

i

} =
∑
(i,j)

(
β

j

i log β
j

i +
(
1 − β

j

i

)
log
(
1 − β

j

i

))−
∑

i

∑
j

β
j

i log β
j

i −
∑

j

∑
i

β
j

i log β
j

i

=
∑
(i,j)

((
1 − β

j

i

)
ln
(
1 − β

j

i

)− β
j

i ln β
j

i

)
. (10)

Therefore, the Bethe-free energy approach applied to the GM (2) results in minimization of
the Bethe-free energy (BFE) functional

FBP{β} = T
∑

(i,j)∈E

(
β

j

i ln
β

j

i(
p

j

i

)1/T
− (1 − β

j

i

)
ln
(
1 − β

j

i

))
, (11)

over β = (βj

i

)
under the constraints (9).

To analyze the minima of the BFE, we incorporate Lagrange multipliers μi, μ
j enforcing

the constraints in (9). Looking for a stationary point of the Lagrange function over the β

variables, one arrives at the following set of quadratic equations for each (of N2) variables, βj

i :

∀(i, j) ∈ E : β
j

i

(
1 − β

j

i

) = (pj

i

)1/T
exp
(
μi + μj

)
. (12)

One observes that any solution of (9), (12) at T > 0 that contains at least one β
j

i which is
not integer does not contain any integers among all β

j

i . In fact, our main focus will be on

4
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these non-integer (interior) solutions of (9), (12). To find a solution of BP (9), (12) one relies
on an iterative procedure. For a description of a set of iterative BP algorithms convergent
to a minimum of the BFE for the perfect matching problem we refer the interested reader to
[1, 4, 5].

Remark 1. Note that just derived BP approximation differs from the so-called mean-field
(MF) approximation corresponding to the following ansatz:

b(σ ) ≈ bMF(σ ) =
∏

(i,j)∈E

b
j

i

(
σ

j

i

)
, (13)

enforcing statistical independence of the edge beliefs. If one substitutes b(σ ) by bMF(σ ) in (3)
and also accounts for the normalization condition (6), which may be understood here as one
enforcing the ‘Fermi exclusion principle’ for an edge (i, j) to contribute a perfect matching,
σ

j

i = 1, the resulting expression for the MF free energy will turn into the BP expression
(11) with the first term there changing the sign to −. One expects that BP approximation
outperforms MF approximation in accuracy. Consider, for example, N = 10 and β

j

i = 1/N ;
then the exact BP and MF entropies are ln(10!) ≈ 15.10, 100(.9 ln(.9) − .1 ln(.1)) ≈ 13.54
and 100(−.9 ln(.9) − .1 ln(.1)) ≈ 32.50, respectively. An intuitive explanation for MF
overestimating the entropy term is related to the fact that MF ignores correlations related to
competitions between neighboring edges for contributing a perfect matching.

3. Threshold behavior of BP at low temperatures

As discovered in [11], at T = 0, properly scheduled iterative version of BP converges
efficiently to the ML solution of the problem. In this context it is natural to ask the question
of how a non-integer solution of BP emerges with a temperature increase. To address this
question, we first consider the following homogeneous example.

Example 1. Define a homogeneous weight model biased toward a perfect matching solution,
σ

j

i = δ
j

i : p
j

i = 1 if i �= j and pi
i = W (W > 1). Looking for β in the homogeneous form

β
j

i (T ) =
{

1 − ε(N − 1) if i = j

ε otherwise,
(14)

one observes that this ansatz for β solves the BP (9), (12) at ε equal to εmin = (N − 1 −
W 1/T )/((N − 1)2 − W 1/T ). At T = ∞, the probabilities are uniform, i.e. β from (14)
with ε = εmin is β

j

i = 1/N for all (i, j) ∈ E. Now consider lowering the temperature
and observe that at Tc = ln W/ ln(N − 1) the nontrivial solution, with β

j

i �= 0, 1 for all
(i, j) ∈ E, turns exactly into the isolated/trivial ML one, β

j

i = δ
j

i . Obviously one finds
that the BFE, FBF, considered as a function of ε, achieves its minimum at ε = εmin if
T > Tc. Exactly at T = Tc, this εmin = 0 and the nontrivial solution merges into the isolated
ML solution. The dependence of the BFE on ε for different T (at some exemplary values
of N and W ) is shown in figure 1(a). The partition function can be calculated efficiently.
Counting the configurations straightforwardly (in a brute force combinatorial manner), one
derives Z = ∑N

k=0 W(N−k)/T
(
N

k

)
Dk . The following recursion is used to evaluate the number

of permutation coefficient, Dk: ∀k � 2,Dk = (k − 1)(Dk−1 + Dk−2),D0 = 1,D1 = 0.
A comparison of T ln Z and T ln ZBP as functions of T is shown in figure 1(b).

Returning to the case of an arbitrary non-negative P, we discover that this phenomenon
of the nontrivial solution splitting at some finite nonzero (!!) temperature from the ML
configuration is generic.

5
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0 0.04 0.08

−8

−4
T=Tc
T=1.5*Tc
T=2*Tc

(a)
0.0 0.1 0.2 0.3 0.4

6.9

7.0

7.1

7.2

7.3

(b) T lnZ vs T .

0.35 0.40 0.45 0.50

5

0

5

ln(Z/Z BP ) vs T  for
different estimators.

(c)

Figure 1. This figure contains a set of illustrations based on the homogeneous example 1
discussed in the text. N = 10 and W = 2 are chosen for these illustrations. (b) T ln Z

for the homogeneous model (red) and respective BP expression, T ln ZBP (blue) as functions
of the temperature, T. Green dashed line mark Tc. (c) comparison of different estimations of
ln(Perm(β. ∗ (1 − β))/

∏
(i,j)(1 − β

j

i )) versus the temperature parameter T, where β is the matrix
of marginal beliefs evaluated at a fixed point of BP equations. Red, blue, purple, green and
dashed-gray lines show the exact expression, the lower bound of corollary 7, the lower bound of
theorem 8, the upper bound of proposition 9 and the BP expression, respectively. (a) FBP versus
ε. (b) T ln Z versus T. (c) ln(Z/ZBP) versus T for different estimators.

(This figure is in colour only in the electronic version)

Proposition 1. For any non-negative matrix P = ((
p

j

i

)1/T ∣∣i, j = 1, . . . , N
)

one finds a
special (we call it critical) temperature, Tc, such that for T > Tc + ε a nontrivial solution of
BP, corresponding to a local non-saturated minimum of FBP, dominating the respective value
corresponding to the maximum likelihood solution, is realized for at least a sufficiently small
positive ε. This special solution coincides with the best perfect matching solution at T = Tc

and it does not exist for T < Tc. The critical temperature Tc solves

det
(
P

j

i − 2σ
j

∗iP
j

i

) = 0, (15)

where σ∗ is the ML configuration.

Proof. Our proof of the proposition is constructive. Let us look for a solution of the BP
equations weakly deviating from the ML configuration σ∗. Without loss of generality we
assume that σ

j

∗i = δ
j

i . We introduce v
j

i = β
j

i

(
1 − β

j

i

) 
 1 and observe that a nontrivial

solution, approaching the ML one at v → 0, is β
j

i = (
1 − (1 − 2δ

j

i

)[
1 − 4v

j

i

]1/2)/
2.

Linearizing the normalization condition, over v one derives ∀i : vi
i = ∑

j �=i v
j

i ; ∀ j : v
j

j =∑
i �=j v

j

i . On the other hand, the BP equation (12), complemented by the set of linear

constraints on v, translates into ∀ i : P i
i U

i = ∑
j �=i P

j

i Uj ; ∀ j : P
j

j Uj = ∑
i �=j P

j

i Ui ,
where Ui = exp(μi) and Uj = exp(μj ). Requiring that the later equations have a nontrivial
solution (with nonzero v), one arrives at the critical temperature condition (15). It is then
straightforward to verify that the extension of the nontrivial solution into the T < Tc domain
is unphysical (as some elements of the respective small v solution are negative), while the
BFE associated with the nontrivial solution for T > Tc is smaller than the one corresponding
to the ML perfect matching. �

Conjecture 2. We conjecture that the non-integer solution of BP equations discussed
in proposition 1 extends beyond the small Tc + ε vicinity of Tc, and this solution transitions
smoothly at T → ∞ into the obvious fully homogeneous solution, βj

i = 1/N for all (i, j) ∈ E.
Another plausible conjecture is that no other non-integer solutions exist at T < Tc; therefore,

6
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when the non-integer solution discussed in the proposition emerges at T = Tc it, in fact, gives
a global minimum of the BFE.

4. Background (II): loop calculus and series

Here we consider T > Tc where, according to the main result of the previous section, there
exists a solution of (9), (12) lying in the interior of the doubly stochastic matrix polytope. We
assume that such a nontrivial solution of the BP equations is found.

As shown in [12, 13], the exact partition function of a generic GM can be expressed in
terms of a LS, where each term is computed explicitly using the BP solution. Adapting this
general result to the permanent, bulky yet straightforward algebra leads to the following exact
expression for the partition function Z from (2):

Z/ZBP = zLS; zLS ≡ 1 +
∑
C �=∅

rC,

rC ≡
(∏

i∈C

(1 − qi)

)(∏
j∈C

(1 − qj )

) ∏
(i,j)∈C

β
j

i

1 − β
j

i

.

(16)

The variables β are in accordance with (9), (12) and C stands for an arbitrary generalized
loop, defined as a subgraph of the complete bipartite graph with all its vertices having a degree
larger than 1. The qi (or qj) in (16) are the C-dependent degrees, i.e. qi = ∑

j |(i,j)∈C 1 and
qj = ∑i|(i,j)∈C 1. According to (16), those loops with an even/odd number of vertices give
positive/negative contributions rC.

5. Loop series as a permanent

This section, explaining the main result of the communication, is split into two parts. In
subsection 5.1 we give a simple derivation of a very compact representation for the LS (16)
following directly from the BFE formulation. Subsection 5.2 contains an alternative derivation
of this main formula from LS using the concept of the Ihara–Bass graph ζ -function [14, 15].

We also find it appropriate here to make the following general remark. Even though
discussion of the manuscript is limited to permanents, counting perfect matchings over KN,N ,
all the results reported in this section allows for straightforward generalizations to weighted
counting of perfect matchings over arbitrary (and not necessarily bipartite) graphs.

5.1. Permanent representation for Z/ZBP

Theorem 3. For any non-integer solution of the BP equations (9), (12), the following is true:

Perm(P )/ZBP = Perm(β. ∗ (1 − β))
∏

(i,j)∈E

(
1 − β

j

i

)−1
, (17)

where A. ∗ B is the element-by-element multiplication of the A and B matrices.

Proof. From the definition of the BFE, FBP = −T ln ZBP and (9), (12), one derives

ZBP =
∏

(i,j)∈E

⎡
⎣(1 − β

j

i

) ( (
p

j

i

)1/T

β
j

i

(
1 − β

j

i

)
)β

j

i

⎤
⎦ =

∏
(i,j)∈E

(
1 − β

j

i

)∏
i

e−μi

∏
j

e−μj

.

7
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On the other hand (12) results in Perm(P ) = Perm(β. ∗ (1 −β))
∏

i exp(−μi)
∏

j exp(−μj).
Combining the two formulas we arrive at (17). �
Remark 2. Note that if one considers expanding the permanent on the rhs of (17) over the
elements of the matrix β. ∗ (1 −β), each element of the expansion will be positive, in contrast
with the LS of (16). Moreover, the number of terms in the Perm-expansion is significantly
smaller than those in the original LS.

5.2. From LS to the permanent representations for Z/ZBP

Here we discuss the relation between the two complementary representations of Z/ZBP, i.e.
between the LS expression (16) and the permanent formula (17). We do this in two steps,
stated in the two theorems presented consequently, one relating the LS to an average of a
determinant, and another one expressing it via the permanent of β. ∗ (1 − β).

Theorem 4 (LS as an average of the determinant). Let �E be the set of directed edges obtained
by duplicating undirected edges E of KN,N . Define the edge-adjacency matrix M of the
complete bipartite graph KN,N according toMi→j,k→l = δl,i(1−δj,k). Let x = (xi→j )(i→j)∈�E
be the set of random variables that satisfies 〈xi→j 〉 = 0, 〈xi→j xj→i〉 = 1 and 〈xi→j xk→l〉 = 0
({i, j} �= {k, l}). (Here and below 〈· · ·〉x stands for the mathematical expectation over the
random variables x.) Then, the following relation holds: zLS = 〈det[I − iBM]〉x , where

B = diag
(√

β
j

i

/(
1−β

j

i

)
xi→j

)
.

Proof. For a general undirected graph G, the Ihara–Bass formula [14, 15] states that

ζ−1
G (u) = det[I − uM] = (1 − u)|E|−|V | det[I + u2(D − I ) − uA], (18)

where A is the adjacency matrix and D = diag(qi; i ∈ V ) is the degree matrix of G. If we
take the limit u → ∞, this formula implies detM = (−1)|E|∏

i∈V (1 − qi). Expanding the
determinant, one derives

det[I − iBM] =
∑

{e1,...,en}⊂ �E
detM|{e1,...,en}(−i)k

n∏
l=1

(B)el ,el
. (19)

Evaluating the expectation of each summand in (19), one observes that it is nonzero only if
(i → j) ∈ {e1, . . . , en} implies (j → i) ∈ {e1, . . . , en}, thus arriving at

〈det[I − iBM]〉x =
∑
C⊂E

(−1)|C| detM|C
∏

(i,j)∈C

β
j

i

1 − β
j

i

= 1 +
∑

∅�=C⊂E

rC.

�
Theorem 5 (from LS to permanent). For the doubly stochastic matrix of BP beliefs β and
LS defined in (16), one derives

zLS = Perm(β. ∗ (1 − β))
∏

(i,j)∈E

(
1 − β

j

i

)−1
.

Proof. We use theorem 4, choosing the random variables x
j

i = xi→j = xj→i that take ±1
values with probability 1/2. We also utilize a multivariate version of the Ihara–Bass formula
from [16] to derive the following expression for zLS proving the theorem:

det[I − iBM] = det

[
0

√
β. ∗ (1 − β). ∗ x

(
√

β. ∗ (1 − β). ∗ x)T 0

] ∏
(i,j)∈E

(
1 − β

j

i

)−1
,

zLS = 〈det(
√

β. ∗ (1 − β). ∗ x)2〉x
∏
(i,j)

(
1 − β

j

i

)−1 = Perm(β. ∗ (1 − β))
∏
(i,j)

(
1 − β

j

i

)−1
.

�
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6. Invariance of the Gurvits–van der Waerden lower bound and new lower bounds for
the permanent

Van der Waerden [17] conjectured that the minimum of the permanent over the doubly
stochastic matrices is NN/N!, and it is only attained when all entries of the matrix are
1/N . Though the conjecture appears to be simple, it remained open for over 50 years before
Falikman [18] and Egorychev [19] finally proved it. Recently Gurvits [20] found an alternative,
surprisingly short and elegant proof that also allowed for a number of unexpected extensions
of the Van der Waerden conjecture. We call it the Gurvits–van der Waerden theorem. (See
e.g. [21].) A simplified form of this theorem is as follows.

Theorem 6 (Gurvits–van der Waerden theorem [20, 21]). For an arbitrary non-negative
N × N matrix A,

Perm(A) � cap(pA)
NN

N !
, where pA(x) ≡

∏
i

∑
j

ai,j xj , cap(pA) ≡ inf
x∈R

N
>0

pA(x)∏
j xj

.

We have found that the lower bound of theorem 6 has a ‘good’ property with respect
to the BP transformation. As stated in theorem 3, BP transforms the permanent to another
permanent. Therefore, applying theorem 6 to both sides of (17), one naturally asks how
do the two lower bounds compare? A somewhat surprising result is that the Gurvits–
van der Waerden theorem is invariant with respect to the BP transformation. Namely,
cap(pP ) = ZBP ∗cap(pβ.∗(1−β))

∏
(i,j)∈E

(
1−β

j

i

)−1
. The lower bound for Perm(β.∗ (1−β))

based on theorem 6 is

Corollary 7.

Perm(β. ∗ (1 − β)) � N !

NN

∏
(i,j)∈E

(
1 − β

j

i

)βj

i .

Proof. This bound is the result of a direct application of the inequality
∑

j β
j

i

(
1 − β

j

i

)
xj �∏

j

[(
1 − β

j

i

)
xj

]βj

i to theorem 6. �

We also obtain another lower bound which improves the bound of corollary 7 at sufficiently
low values of the temperature. See figure 1(c) for an illustration.

Theorem 8. For an arbitrary perfect matching � (permutation of {1, . . . , N}),
Perm(β. ∗ (1 − β)) � 2

∏
i

β
�(i)
i

(
1 − β

�(i)
i

)
.

Proof. Without loss of generality, we assume that � is the identity permutation.
From the positivity of entries and (9), we have Perm(β. ∗ (1 − β)) �

∏
i β

i
i Perm(X),

where Xij = δi,j + (1 − 2δi,j )β
j

i . Since β is a stochastic matrix, det X = 0, and thus
Perm(X) � 2

∏
i

(
1 − βi

i

)
. �

Note, for the sake of completeness, that a comprehensive review of other bounds on
permanents of specialized matrices (for example 0, 1 matrices) can be found in [22].
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7. New upper bound for permanent

Proposition 9.

Perm(β. ∗ (1 − β)) �
∏
j

(
1 −

∑
i

(
β

j

i

)2)
.

Proof. We use the Godzil–Gutman representation for permanents [23]

Perm(β. ∗ (1 − β)) = 〈det(
√

β. ∗ (1 − β). ∗ σ)2〉σ , (20)

where σ
j

i = ±1, with i, j = 1, . . . , N, are independent random variables taking values ±1
of equal probability. Each row of the matrix

√
β. ∗ (1 − β). ∗ σ has the squared Euclid norm∑

i β
j

i

(
1 − β

j

i

) = 1 −∑i

(
β

j

i

)2
. Therefore, the upper bound is obtained from the Hadamard

inequality |det(a1, . . . , an)| � ‖a1‖ · · · ‖an‖. �

8. Path forward

We consider this study to be the beginning of further research along the following lines:
(1) more detailed analysis of the BP solution, in particular, study of Tc, e.g. concerning its
dependence on the matrix size, analysis of the BP solution dependence on temperature, and
the construction of an iterative algorithm provably convergent to a nontrivial BP solution for
T > Tc; (2) explanation of the BP invariance with respect to the Gurvits–van der Warden
lower bound; (3) development of a deterministic and/or randomized polynomial algorithm for
estimating the permanent with provable guarantees based on the loop calculus expression; and
(4) numerical tests of the lower and upper bounds for realistic large-scale problems.
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